Advances on High Temperature Pd-Based Membranes and Membrane Reactors for Hydrogen Purifcation and Production
Authors
Abstract:
Membrane technology applied in the chemical and energy industry has the potential to overcome many drawbacks of conventional technologies such as the need of large volume plants and large CO2 emissions. Recently, it has been reported that this technology might become more competitive when operated at high temperatures. This is mostly associated with the required of heat integration at large scale. However, good membrane stability combined with high permeation rates and high perm-selectivities, has only been achieved at intermediate/low temperatures (< 500 °C). When operated at these lower temperatures in a fully integrated plant, there is often the need of electricity import, which strongly decreases the process efciency and renders the membrane-based technology less competitive compared to conventional technologies. To improve the competitiveness of membrane technology further developments are required, demanding in particular an improvement in the preparation methods, the use of new materials and/or the development of novel reactor confgurations. In this study, a comprehensive review on the latest advancements in membrane technology for H2 separation at high temperature is presented. Special attention is given to the membranes prepared and presented in the literature in the last years for high-temperature applications, as well as the different membrane reactor confgurations that have proposed, tested and evaluated for different reaction systems at elevated temperatures. Since concerns about the need of high temperatures in membrane technology are relatively new, this review is limited to the results reported in the literature during the last five years.
similar resources
Recent Advances in Pd-Based Membranes for Membrane Reactors.
Palladium-based membranes for hydrogen separation have been studied by several research groups during the last 40 years. Much effort has been dedicated to improving the hydrogen flux of these membranes employing different alloys, supports, deposition/production techniques, etc. High flux and cheap membranes, yet stable at different operating conditions are required for their exploitation at ind...
full textAdvances in Polysulfone-Based Membranes for Hemodialysis
The polysulfone-based membrane has been used in hemodialysis (HD) and it is continuously developed to maintain its sustainability on the subject of biocompatibility. During the polysulfone-based membrane development, several parameters should be considered to improve the membrane performances, such as excellent biocompatibility, appropriate ultrafiltration rate, and effective clearance of the t...
full textTheoretical Performance Evaluation of Inorganic (Non Pd-Based) Membranes for Hydrogen Separation
The aim of this work theoretical study is to theoretically investigate a inorganic membrane assisted purifcation process of an H2-rich stream derived from a conventional methanol steam reforming stage. In particular, a black-box model for multicomponent gas mixture purifcation is dev...
full textDevelopment of Palladium-Alloy Membranes for Hydrogen Separation and Purification
This paper summarizes R&D activities and progress at NORAM Engineering and the University of British Columbia (UBC) on preparation and testing of thin palladium-based membranes and their applications. Most of these activities were carried out internally at NORAM, some jointly with UBC and their spin-off company, Membrane Reactor Technology (MRT) through a wide range of projects. Key results out...
full textRecent Advances on Carbon Molecular Sieve Membranes (CMSMs) and Reactors
Carbon molecular sieve membranes (CMSMs) are an important alternative for gas separation because of their ease of manufacture, high selectivity due to molecular sieve separation, and high permeance. The integration of separation by membranes and reaction in only one unit lead to a high degree of process integration/intensification, with associated benefits of increased energy, production effici...
full textMy Resources
Journal title
volume 3 issue 3
pages 142- 156
publication date 2017-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023